Automatic classification and detection of clinically-relevant images for diabetic retinopathy
نویسندگان
چکیده
We proposed a novel approach to automatic classification of Diabetic Retinopathy (DR) images and retrieval of clinically-relevant DR images from a database. Given a query image, our approach first classifies the image into one of the three categories: microaneurysm (MA), neovascularization (NV) and normal, and then it retrieves DR images that are clinically-relevant to the query image from an archival image database. In the classification stage, the query DR images are classified by the Multi-class Multiple-Instance Learning (McMIL) approach, where images are viewed as bags, each of which contains a number of instances corresponding to non-overlapping blocks, and each block is characterized by low-level features including color, texture, histogram of edge directions, and shape. McMIL first learns a collection of instance prototypes for each class that maximizes the Diverse Density function using ExpectationMaximization algorithm. A nonlinear mapping is then defined using the instance prototypes and maps every bag to a point in a new multi-class bag feature space. Finally a multi-class Support Vector Machine is trained in the multi-class bag feature space. In the retrieval stage, we retrieve images from the archival database who bear the same label with the query image, and who are the top K nearest neighbors of the query image in terms of similarity in the multi-class bag feature space. The classification approach achieves high classification accuracy, and the retrieval of clinically-relevant images not only facilitates utilization of the vast amount of hidden diagnostic knowledge in the database, but also improves the efficiency and accuracy of DR lesion diagnosis and assessment.
منابع مشابه
Automatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method
Introduction: Diabetic retinopathy (DR) is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA...
متن کاملEarly Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods
Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses th...
متن کاملDiagnosis of Diabetic Retinopathy Using Processing of Fundus Images and Morphological Techniques
Introduction: Diabetic retinopathy is the damaging effect of diabetes on retinal blood vessels that can cause blindness when diagnosed late. Microaneurysms are early signs of the disease that their early diagnosis promotes timely treatment and prevents disease progression. Since this disease is asymptomatic and can only be detected by ophthalmologists, diabetic patients should be tested regular...
متن کاملDiagnosis of Diabetic Retinopathy Using Processing of Fundus Images and Morphological Techniques
Introduction: Diabetic retinopathy is the damaging effect of diabetes on retinal blood vessels that can cause blindness when diagnosed late. Microaneurysms are early signs of the disease that their early diagnosis promotes timely treatment and prevents disease progression. Since this disease is asymptomatic and can only be detected by ophthalmologists, diabetic patients should be tested regular...
متن کاملارایه مدلی از شبکههای عصبی خودسازمانده سلسله مراتبی در جهت تشخیص و طبقهبندی ضایعات شبکیه برای درجهبندی رتینوپاتی دیابتی
Background: One common symptom of diabetes is diabetic retinopathy, if not timely diagnosed and treated, leads to blindness. Retinal image analysis has been currently adopted to diagnose retinopathy. In this study, a model of hierarchical self-organized neural networks has been presented for the detection and classification of retina in diabetic patients. Methods: This study is a retrospective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008